
MODULE 5

TIME STAMP BASED ALGORITHMS

• Here every site maintains a logical clock that is incremented when a
transaction is submitted at that site and updated whenever the site
receives a message with a higher clock value(every message contains
the current clock value of its sender site).

• Each transaction is assigned a unique timestamp and conflicting
actions are executed in the order of the timestamp of their
transactions.

• A timestamp is generated by appending the local clock time with the
site identifier.

Timestamp can be used in two ways

• First,they can be used to determine the currency or outdatedness of a
request with respect to the data object it is operating on.

• Second,they can be used to order events(read-write) with respect to
another.In timestamp based concurrency control algorithms,the
serialization order of transactions is selected apriori and transactions
are forced to follow this order

1.Basic Time Stamp Ordering(BTO) Algorithm

• Every transaction is issued a timestamp based on when it
enters the system. Suppose, if an old transaction Ti has
timestamp TS(Ti), a new transaction Tj is assigned timestamp
TS(Tj) such that TS(Ti) < TS(Tj). The protocol manages
concurrent execution such that the timestamps determine the
serializability order. The timestamp ordering protocol ensures
that any conflicting read and write operations are executed in
timestamp order. Whenever some Transaction T tries to issue a
R_item(X) or a W_item(X), the Basic TO algorithm compares
the timestamp of T with R_TS(X) & W_TS(X) to ensure that the
Timestamp order is not violated. This describes the Basic TO
protocol in the following two cases.

1. Whenever a Transaction T issues a W_item(X) operation,
check the following conditions:

1. If R_TS(X) > TS(T) or if W_TS(X) > TS(T), then abort and rollback T
and reject the operation. else,

2. Execute W_item(X) operation of T and set W_TS(X) to TS(T).
2. Whenever a Transaction T issues a R_item(X) operation, check

the following conditions:
1. If W_TS(X) > TS(T), then abort and reject T and reject the operation,

else
2. If W_TS(X) <= TS(T), then execute the R_item(X) operation of T and

set R_TS(X) to the larger of TS(T) and current R_TS(X).

Thomas write Rule(TWR)

• Thomas Write Rule provides the guarantee of serializability
order for the protocol. It improves the Basic Timestamp
Ordering Algorithm.

• The basic Thomas write rules are as follows:
• If TST  R_TSX then transaction T is aborted and rolled
back, and operation is rejected.

• If TST  W_TSX then don't execute the W_item(X)
operation of the transaction and continue processing.

• If neither condition 1 nor condition 2 occurs, then allowed to
execute the WRITE operation by transaction Ti and set
W_TSX to TST

Multiversion Timestamp Ordering Algorithm

• In the multiversion timestamp ordering(MTO) algorithm,

• a history of a set of R-ts ‘s and <W-ts,value> pairs(called versions) is
kept for each data object at the respective DM’s.

• The R-ts’s of a data object keep track of the timestamps of all the
executed read operations

• The versions keep track of the timestamp and the value of all the
executed write operations.

CONSERVATIVE TIME STAMP ORDERING
ALGORITHM
• System Components:
• A timestamp ordering scheme for every site (i.e, a transaction
manager, TM) in the system.

• A scheduler process that keeps track of all the transaction requests
arriving at a certain data manager (DM). This scheduler also maintains
two internal queue data structures for each TM, namely a READ and a
WRITE queue. These queues, as the name suggests, hold READ and
WRITE requests for a TM and are ordered by using the timestamp
ordering scheme previously mentioned.

Read

A read (x,TS) request is executed in the following way.

If (every W(Q) is non empty && first write on each W –queue has a
timestamp)>TS

 read is executed

otherwise read(x,TS) request is executed in the R-queue

Write

A read (x,v,TS) request is executed in the following way.

(If all R queues and all W queues are non empty and first read on each
R-queue has a timestamp >TS)

Then Write is executed

Otherwise write(x,v,TS) request is buffered in the queue.

Optimistic Algorithm

• Optimistic Concurrency Control Algorithms are based on the
assumption that conflicts do not occur during execution time.

• No synchronization is performed when a transaction is executed.
However, a check is performed at the end of the transaction to make
sure that no conflicts have occurred.

• If there is a conflict, the transaction will be aborted.
• Otherwise, the transaction is committed.
• Since conflicts do not occur very often, this algorithm is very efficient
compared to other locking algorithms.

Conflicts in DBMS

• Conflicting operations: Two operations are said to be
conflicting if all conditions satisfy:

• They belong to different transactions
• They operate on the same data item
• At Least one of them is a write operation

• Example: –
• Conflicting operations pair (R1(A), W2(A)) because they belong
to two different transactions on same data item A and one of
them is write operation.

• Similarly, (W1(A), W2(A)) and (W1(A), R2(A)) pairs are
also conflicting.

• On the other hand, (R1(A), W2(B)) pair
is non-conflicting because they operate on different data item.

• Similarly, ((W1(A), W2(B)) pair is non-conflicting.

Kung-Robinson Algorithm

• Kung and Robinson were the first to propose an optimistic method for
concurrency control.

•
The optimistic situation for this algorithm happens when

• conflicts are unlikely(not probable) to happen
• the system consists mainly read-only transactions

•
Basic Idea: No synchronization check is performed during transaction
processing time, however, a validation is performed to make sure there
is no conflicts occurred. If a conflict is found, the tentative write is
discarded and the transaction is restarted.

The algorithm
Divide the execution of transaction into three phases:

•read phase: data objects are read, the intended computation of the transaction is done, and writes are made on
a temporary storage.
validation phase: check to see if writes made by the transaction violate the consistency of the database. If the
check finds out any conflicts, the data in the temporary storage will be discarded.

• Otherwise, the write phase will write the data into the database.

T: a transaction
ts: the highest sequence number at the start of T
 tf: the highest sequence number at the beginning of its validation
phase
After the read phase of transaction T,the following algorithm is
executed in a mutually exclusive manner
 
valid:=true;
 
 for t:=ts+1 to tf do
 
 if (writeset(t) & readset[T] != {}) then valid :=false;
 
 if valid then {write phase; increment counter, assign T a sequence
number}

write phase: If the validation phase passes ok, write will be performed to the database. If the validation phase
fails to pass, all temporary written data will be aborted.

